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ABSTRACT

) The characteristic equation for a lossy three-layer ocean model is complex and
transcendental and thus requires numerous, lengthy iterations to determine its eigenvalues.
Factoring the equation, made possible by the introduction of a small error term, provides
new equations that are quickly and easily solved. The eigenvalues of the simplified
equations are examined and compared with those of the original characteristic equation for
two water/sediment/bedrock models. The first model treats all three layers as liquids which
can propagate only compressional waves. The second model represents both the sediment
and bedrock layers as elastic materials which support the propagation of shear waves in
addition to compressional waves. For the all-liquid model, the factored solutions showed
too much mode attenuation compared to the exact solutions. A different type of factor was
developed that had eigenvalues closer to the exact eigenvalues. The liquid/elastic/elastic

model factored solutions also predicted too much loss, but no correction was found.
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Chapter 1

INTRODUCTION

Normal mode theory determines exact solutions for ducted sound propagation
problems. The theory gives a characteristic equation for a given duct system.
Unfortunately, the characteristic equations which determine the eigenvalues are usually
transcendental functions that require numerical analysis and the aid of a computer to solve.
Using approximations of a characteristic equation can make finding the eigenvalues easier
and quicker.

An important duct problem is a three-layer model of the ocean. The characteristic
equation determining its eigenvalues is complex and transcendental. It can be solved
numerically using Newton's Method for nonlinear systems, but that is a time-consuming
computer process. This study describes a factoring technique for breaking the
characteristic equation into simpler equations, and compares the eigenvalues produced by
the characteristic equation and the simpler equations.

Two types of three layer models will be considered: a liquid/liquid/liquid (LLL)
model and a liquid/elastic/elastic (LEE) model. The LLL model is the simpler since only
pressure waves can propagate in liquids. The LEE treats the water as a liquid, but treats the
sediment and the bedrock as elastic media which support both pressure and shear waves.

The use for two models arises from many types of sediments and ocean bottoms.




1.1. Definition of the Three-Layer Model

The model representing the ocean is a three-layer waveguide composed of water,
sediment, and bedrock. The water is designated as layer 1 and has constants density p;,
sound speed ¢, and wavenumber k;. Likewise, the sediment is layer 2 with p, ¢2, and
k3, and the bedrock, usually basalt or granite, is layer 3 with p3, c3, and k3. The water has
depth A and the sediment has depth ¢. The bedrock is a halfspace. All boundary surfaces

are smooth and horizontal, and the water-air surface at z=0 is a pressure release surface.

water ;01 c

Z=h+t

Figure 1.1. The Three-Layer Ocean Model




1.2. Development of the Characteristic Equation

The development of the characteristic equation for a general layered waveguide
begins with the wave equation's associated Helmholtz equation for the pressure of plane
waves. Pressure P is a function of both range r and depth z. The wavenumber k and
sound speed c are generally functions of z, and k(z)=a¥c(z). Since the interest is in the

water layer, the equation is developed for this region.
V2P(r,2) +ki(2)? P(r,2) =0 . ' (1.1)

The separation of variables technique can be used to get the differential equation for Z(z)
that describes the z-dependence only as in (1.2). The separation constant is denoted &5,
and is the horizontal component of the wavenumber k. The k,’s are the eigenvalues that

determine the normal modes for the waveguide. For example, in the water layer,

d 21(2)
z2

+ (k51(2)2 - k2)Z1(2) =0 . (1.2)

The vertical component of k; will be denoted as x;. The relationship for £ and its
components is k; 2= K; 2+k,2. For the models developed here, k and k will not be

functions of z, since the sound speeds are assumed to be constants.

d :1(’) + 322 =0 . (1.3)

The solution to (1.3) is given by (1.4), where Aeixiz represents an upward

traveling wave, and Be-i%1Z represents a downward traveling wave.

Z\(2)=Aeinz 4+ Be-imiz (1.4)




If the water region is divided into a lower and upper region at the depth of a source, then
two equations can be written from (1.4): one for a wave that travels upward from the
source and strikes the surface, and one that travels downward from the source and strikes
the water-sediment interface. The uptraveling wave becomes a downward traveling wave
after reflecting off the surface and the down traveling wave becomes an uptraveling wave

after hitting the interface. The two equations describing this are
ZU = gimz 4 Rye-imz (1.5)
and
ZD = Ryeint-h) + g-inlz-h) | (1.6)

where R; and R,3 are complex reflection coefficients. To relate these two equations to
one another, their Wronskian is set equal to zero in (1.7).

zv zb
ZUI ZDI

W(Ky) = =2ZUzb'_2UzD =0 . (1.7)

After completing the necessary math, the characteristic equation is

W(x) = 1—9‘19‘138'2"“" =0 . (1.8)

1.2.1. Making k, Complex

Now k,, the horizontal component of wavenumber k, is made complex with small
imaginary part €,. Allowing the wavenumber to be complex introduces a loss into the

characteristic equation.

kn= kn+i€n . (19)




The expression for the vertical component of the wavenumber is then
K? = k? = (kn +i€n)? . (1.10)

If it is assumed that &, is very small so its squared term may be ignored, after rearranging

and using the binomial expansion, the expression for x; becomes

X =(k%-k3)"2-%§£ . (1.11)

The first term on the right side of (1.11) represents the real part of x; and will be denoted
as x‘f The xj in the denominator of the second term on the right side of (1.11) can be

approximated as Kf so that rewriting (1.11) gives

ikn&
K = K- gl (1.12)
Substituting (1.12) into the characteristic equation gives
1-R,Ry3 e Hrhg2hneh/ef oo (1.13)

The exponential with the &, in it is the loss or attenuation introduced by the complex k.

The modes with the smallest &,'s will propagate best.
1.2.2. The Magnitude and Phase of R;

The reflection coefficient R, is complex and may be represented in polar form.
Ry =| K, Je-ion . (1.14)

The air-water interface is considered to be a near perfect pressure release boundary for all
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calculations. Therefore the value of R, is set equal to 0.99 and the phase @ is set equal to

pi. The characteristic equation is now

1-|Ry| Ry3 e-itad+@e-2kash/uf =0 (1.15)

1.3. Solving the Exact Characteristic Equation

Before the characteristic equation can be solved, R3 must be known. R;3; will be
developed later, and will be a complex function of both &, and &,. The characteristic
equation, once R3 is substituted into it, can be separated into its real and imaginary parts
yielding two equations for the two unknowns, k, and &,. Newton's Method for nonlinear
systems (Burden and Faires 1985, p. 496) can be used to solve for k, and &,

Recall that for a linear system, Newton's Method is an iterative process in which

X;’s are sought that satisfy

f&x)=0, (1.16)
Xigg =x; - L8 (1.17)
f(x)

(Kunz 1957, pp. 11), where x; is the initial guess and x;4+1 becomes the new guess after

each iteration. For the two variable case, two equations are needed.

filkn€n) =0 . ' (1.18)

S2(knEn) =0 . (1.19)

The iterative equation in matrix notation is




g&.@l -
kn.-.x}= k,, - kn aen fl
[Em.l [e,.] of2 dfr [fz] (1.20)
ok, O&,
Defining x as in (1.21), (1.20) can be rewritten as (1.22).
= kn
x-[e,,] . (1.21)
Gx)=x-J1x)F(x) . (1.22)

The matrix J(x) is the Jacobian matrix, and J-1(x) is the inverse of the Jacobian. This
method usually gives quadratic convergence provided a sufficiently accurate starting value

is given and J-1(x) exists (Burden and Faires 1985, pp. 498).

1.4. The Factoring Technique

In Chapters 2 and 3, R;3 will be shown to be the sum of two or more terms. For
simplicity, say R3 is equal to x plus y, and R and e(-2ix14) are equal to unity. Then the

general form of the characteristic equation is

1-x-y=0 . (1.23)

If we assume that x and y are small, and that the product of the two is also small, then the
product xy can be added to the left side of (1.23). The right side is kept at zero,
introducing product error xy. The left side can be factored into (1-x)(1-y). Adding xy to
the left side and then factoring in this fashion is the factoring technique used on the
characteristic equation. Each of the factors (1-x) and (1-y) is then separated into its real
and imaginary parts. The equation from taking the imaginary part is always a function of

kn only, as will be shown later, and can be solved using Newton's linear method. The




values of k, can then be substituted into the real part equation, which is a function of the

two variables, to find the corresponding values of &,.




Chapter 2
THE LIQUID/LIQUID/LIQUID MODEL

In the liquid/liquidlliquid (LLL) model, all three layers in the waveguide are liquids
capable of supporting the propagation of compressional waves. The reflection and

transmission coefficients needed in R;3 in the characteristic equation must therefore be for

waves striking liquid/liquid boundaries. Shear waves cannot propagate in liquids so they

are not considered until Chanter 3.
2.1. The LLL Characteristic Equation

In order to solve the characteristic equation developed in Chapter 1 (1.8), R;3 must
be obtained. K3 is a combined reflection coefficient describing the total returned sound |
from the sediment and basement. The derivation follows from Clay and Medwin (1977,
pp- 96).

2.1.1. Ry3 for the LLL Model

The reflection coefficient and transmission coefficient for two liquid layers are

= ___Zz-an 2.1
Riz AR 2.1
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Sz = I—lZL‘ , (2.2)

where the impedances, Z; and Z3, are giver in Table 2.1. The energy equation that relates
these coefficients is also listed in Table 2.1. The phase that arises from reflection off the
water-sediment interface @y, is assumed to be zero. Similarly, the equations for R,3 and
23 and their energy relationship are in Table 2.1; @3 is also assumed zero. As shown in
Figure 2.1, the angles are measured from the horizontal, and the sediment compressional
wave path distance in between reflections or transmissions is 7».

From Figure 2.1, the total up traveling signal is the sum of an infinite number of
reflections and transmissions. Each up and each down path in the sediment has a phase
delay of 2kjsin6y¢ or 2K3t. Assuming the incident wave has unit amplitude, the total

reflection R;3 is
Rz = Riz + S12R23821 € 2ik2t + F1,R33 R0 Sgy e~4imt 4. 2.3)

After factoring out 312R9332; e -2i%2¢ from all but the first term, the remaining terms in

(2.3) have the form of a geometric series (Spiegel 1968, pp. 107).
Y x-i=(1-x)" . (2.4)
j=0
The complex coefficients can be replaced by their magnitudes since all of their
phases are approximately by zero. Rewriting (2.3) by summing the series gives for Ry3

312 821 Ryz e -2
1- Ry Rz e -2

9‘(13 = 9‘12 + (2-5)

The reflection coefficient is an oscillating function that depends on 2xt. It also depends on

the frequency and angle of incidence for a given layer (Clay and Medwin 1977, pp. 67).




Table 2.1.

Reflection and Transmission Coefficients for the LLL Model

Z, = pic1 Z,= p2c2 Zs= p3c3
sin 6y sin 6, sin 03
Riz = %:_2 Ra; = - Ri2
R = 5_33_}% R3z2 = - Ros
S12= Zz%zz—l ' Sq = ZTZ?Z_I
S = 23%32 S3, = 252.%22_2.
Energy Relationships: 91%2 +312891 =1

2
R23+323332=1
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815 823 812K 23R 21323

Figure 2.1. Reflection and Transmission Paths for the LLL Model

For the liquid/liquid boundary case, Ra; =— R;2 and 31,35 = 1-R2%

Substitution into (2.5) yields

(1= Ry2?) Koz e -2

Rz =Rz + .
14+ Ryp Ry e-2ixs

(2.6)

2.1.2. Incorporation of Attenuation into R;3 for LLL Model

Whenever a signal travels through the sediment it is attenuated. The values for the
sediment attenuation coefficient oy, usually given in dB/(m kHz), vary for different types
of sediments. An attenuation factor will be necessary in the same places as the sediment
phase factor in the equation for R;3.




A = 10~(2210)( 11000)r,

(1- Ryo’) RyzA Ze-2im

Riz=Riz + T
14+ R Roz A “e-2ixat

Due to the complex ,, k; is replaced by

ikn &
Kz = KZR—
K3

Making the following simplifications transforms (2.8) into (2.12).

S =A%~ R12HRa3

2
S =A"R12R23 ,

Sl e "21.6‘ e-u"&‘/d

9‘( 3= 9‘12 +
1 1+ 5ye-2 ot e-2k.&l/d

2.1.3. Substitution of R13 into the LLL Characteristic Equation

13

2.7

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

Before R;3 can be substituted into the characteristic equation, the second term is

multiplied by the complex conjugate of its denominator.

Riz = Rip + SIE% (e -2idt 4 SzE% )/ben '

where E; and Den are

Ey= e~kest/id

Den =1 + 25,E3 cos(2xr) e-2indt + 52 E3

(2.13)

(2.14)

(2.15)
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Substituting (2.13) into the characteristic equation gives

. R,S,E
- 2 -i2fnedy) _ 2101712
1 -RRyq2E7€ Den 0, (2.16)
where E; and E 3 are
Ey = ¢ noh/ft 2.17)
Eyp = E2E}(e-ixfh s2dt+@r) 4§, E2e-i@xlhr2dn)) (2.18)

2.2. Solving the Characteristic Equation

Equation (2.16) is a complex transcendental equation whose solutions require the
Newton’s method for two variables described in Chapter 1. The solutions found by this
Newton’s method will be called the “exact” solutions. To get two equations for F(x), the
characteristic equation is separated into its real and imaginary parts. The real part equation

from the characteristic equation is

Fl= El{ — R, Rz cos(2K;+Dy)
1

2 (2.19)
- mgml—Ez [cos(2K1+2Kz+®y) + S2E3cos2K+P)] =0
where K1 and K are
Ky = x{z B . (2.20)

Ky= x5t 2.21)
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and the imaginary part equation is

2
F2 = Ry; sin(K 1+ D)) + %f——nz-[sin(ZK1+2K2+¢Dl)+ S2E2 sin(2K1+@p)]= 0 . (2.22)

The partial derivatives involved in finding the Jacobian are difficult to obtain, since
the x;’s are functions of &, and because of the many products. Since the Jacobian is just a
focusing mechanism for determining the next guess, the reflection and transmission
coefficients are held constant with respect to the k,’s for the derivatives. The consequence
of this may be more iterations necessary to focus on a solution.

Newton's Method also requires initial guesses to start the iterations. In the
program, the water factored solutions are calculated first, providing the initial guesses for
the sediment solutions. Both the water and sediment solutions are used for initial guesses

for the exact solutions. See the Appendix for the program listing.

2.3. Factoring the LLL Characteristic Equation

To factor (2.16) as described in section 1.4, a cross term must be added to the left

hand side. Then the equation of factors is (2.23).

0=(1-R R 2E? e-2Ki+ M) (1-

2p2
.%L%mﬂfl(e-«mnxﬂm+325§e-i(2xl+m)), 2.23)

Each of the factors can then be independently set equal to zero. The first factor is called the
water factor since all the parameters in it are associated with the wave paths in the water.
Its solutions will be called the water solutions. The second factor will be called the

sediment factor and its solutions, the sediment solutions.
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2.3.1. The Water Factor
To solve for the eigenvalues of the water factor ,
(1 -R, Rz E2e-iCKi+)) = | (2.24)
the real and imaginary parts are set equal to zero.
1 - R R12 E? cos(K +Py) =0 . (2.25)
sin(2K1+d’1) =0 . (2.26)

The equation formed by the imaginary part is a function of k, only, which is solved for
directly. '

21%2
kn= [k%- (QL‘-’;;‘LI)) ] . 2.27)

The value of 2nx is chosen instead of nrr in order to make cos(2nr) always equal to unity

which can be substituted into equation (2.25) along with k,, to get

Kt
= =1 .
&= |In(RR12) Zhe | - (2.28)
2.3.2. The LLL Sediment Factor
The sediment factor from (2.23) is
252
a- % (e-iK1$ 2K @) 4 §, F2 e-i2K1+B))) = 0 (2.29)
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At this point, another approximation is made to make this factor easily solvable. The
variable 7 is set equal to zero. Setting S; equal to zero is equivalent to only keeping the

first bottom bounce contribution in Figure 2.1.. Equation (2.29) becomes
(1 = RS E?E2 e-i2K1+2K2+ ) = ) (2.30)
Taking the real and imaginary parts of (2.30) yields the following two equations.

1 - R1S1E2E3 cos(2K1+2K+Py) = 0 . (2.31)

sin(2K+2K2+®) =0 . (2.32)

The imaginary part equation is only a function of &, and can be solved using Newton's
method for one variable (Kunz 1957, pp. 11). Following the example of the water factor,
the argument of the sine function is set equal to 2n7. Also k¥ and x% are replaced by their

k, forms to get
F(k,) = 2h(k%-k,%)l/2+ 2:(k§-k3)‘/2+ ®, -2nw=0 . (2.33)

Newton's method requires the derivative of F and initial guess. The initial guesses are
provided by the k,’s found by the water factor. See the Appendix for the program listing.
Once the sediment factor k,,’s are found, they can be placed in (2.31), solved for

(2.34)

& = |In(R;1S51) 1 )
[nS T
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2.4. A Qualitative Comparison of the Solutions

The shapes of the three types of mode sets, exact, water, and sediment, varies.
Figure 2.2 shows the typical shapes for each set. The number of modes is determined by
the frequency f and the water depth 4 by (2.35) (Clay and Medwin 1977, pp. 306).

: 1
n< {T (2hsin@,) + 2 (2.35)

The modes are always close together for high k,’s and spread out for low k,’s. Also, the
harder the sediment, the fewer the modes because the minimum angle 6; for which there is
a mode increases. The discontinuity in the water solutions occurs at the k,, which
corresponds to 6.

In Figure 2.2 and all the eigenvalue plots, the higher up on the y axis a point is, the
better that mode propagates, i.e., the Ig, | is smaller so the loss is lower for that mode. The
range of the &, values is several orders of magnitude, therefore a log scale is used. Note
also that for the exact and sediment factor solutions, only eigenvalues above the critical

angle are plotted. The critical angle shows the onset of sediment penetration.
2.4.1. Forcing the Water Solutions to the Exact Solutions

If the sediment is very dense and the sediment attenuation is very high, a signal will
tend to stay in the water. Therefore the water factor solutions will propagate better than the
sediment factored solutions. The high density of the sediment makes R, nearly equal to
one and thus the transmission into the sediment is small. Whatever waves do get into the
sediment will die out quickly due to the high attenuation. Figure 2.3 shows the water,

sediment, and exact solutions for these inputs. The matching of the water solutions beyond
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Eigenvalue Plot for a Medium Sediment
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Figure 2.2. Typical LLL Eigenvalue Plot for a Medium Sediment

LLL Forcing Water Solutions to Exact Solutions
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Figure 2.3. Forcing the LLL Water Solutions to the Exact Solutions
(p2/p1=1, c/1=2.33, c2=1)
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the critical angle with the exact solutions indicates that the factors may be a good

approximation of the exact solutions.

2.4.2. Forcing the Sediment Solutions to the Exact Solutions

If the sediment density and sound speed are set approximately equal to the water
density and sound speed, and a small sediment attenuation is chosen, the sediment wave
path will dominate. Most of the initial wave is transmitted into the sediment because R, is
small for these conditions. Figure 2.4 shows the sediment and exact solutions to be almost

equal for these inputs, again indicating that the factors might be a good model of the exact

solutions.
LLL Forcing Sediment Solutions to Exact Solutions
7 x
i
g 5 al ..J
e anES
@ 1 s water
S0 44 * o sediment
(Y] [ ]
— d - X exact
E 3 A
Yt L
E 2 a® [ ] aas® sest
1 -y T 5By TTT

000 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Re(eigenvalue)

Figure 2.4. Forcing the LLL Sediment Solutions to the Exact Solutions
(p2/p1=1, ca/c1=1, ap=0.01)
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Chapter 3

THE LIQUID/ELASTIC/ELASTIC MODEL

The LEE model treats both the sediment layer and the basement halfspace as elastic
materials capable of supporting shear waves. Four new parameters are thus introduced, the
shear speeds of sound in the sediment and basement, c2s and c¢3s, and the shear attenuation
coefficient for the sediment is os.

It may seem as though this study is incomplete since it does not address a liquid/
liquid/elastic model. That case was indeed studied but its results proved to be only slightly
different than the liquid/liquid/liquid model.

3.1. The LEE Characteristic Equation

The characteristic equation for the LEE model is (1.15). The derivation for R;3 for
this case differs from the LLL case because the refection and transmission coefficients are
now for liquid/elastic boundaries. Also, new coefficients are needed to account for the
shear waves generated from compressional waves at the liquid/elastic and elastic/elastic
interfaces.

When a pressure wave strikes a boundary of an elastic medium from a liquid
medium, not only are pressure waves reflected from and transmitted through the boundary,
but also a shear wave is transmitted (Miklowitz 1978, pp. 156). If the initial medium is
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also elastic, there will also be a reflected shear wave. These two events are illustrated in
Figure 3.1. Pressure waves are drawn as solid lines, SV waves as dashed lines. The
notation SV stands for a shear wave with vertical polarization. Shear waves with
horizontal polarization are not coupled to the pressure waves and are not considered here
(Tolstoy 1973, pp. 188). An incident shear wave generates pressure waves at the
boundaries in addition to reflecting and transmitting shear waves (Miklowitz 1978, pp.

156). This is illustrated in Figure 3.2.

3.1.1. Reflection Coefficients for the LEE Model

For the boundary events, new liquid/elastic and elastic/elastic reflection and
transmission coefficients are required. The coefficients have been obtained from three
sources and are rewritten here with consistent notation and with incident angles measured
from the horizontal. The coefficients are listed in Table 3.1 (Brekhovskikh 1980, pp. 43-
47) and Table 3.2 (Miklowitz 1978, pp. 160-161). The new coefficients are illustrated in
Figure 3.3. Since signals that penetrate the bedrock do not return, the 323’s are not used in
the calculations and therefore are not included in Table 3.2. The energy relationships that
govern the behavior of the liquid/elastic and elastic/elastic coefficients are listed in Table 3.3

(Ergin 1952, pp. 350) (Miklowitz 1978, 161-162).

3.1.2. R;3 for the LEE Model

As in the LLL model, the incident pressure wave follows the path shown in Figure
2.1. The total reflection coefficient from the wave is similar to (2.3), assuming again that

the phases @3 and @y are zero. The difference from (2.3) is that the coefficients are now

for liquid/elastic or elastic/elastic boundaries. The waves which reflect or transmit




Figure 3.1. Generation of Shear Waves at an Elastic Boundary

Figure 3.2. Shear Waves Incident at a Boundary
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Figure 3.3. Dlustration of LEE Reflection and Transmission Coefficients

pressure waves are designated pp. The contribution to R;3 for the incident pressure wave
which remains a pressure wave, the pp series, is then

PPoPP PP .
PP PP 812321 Rz e-2ixt
Riz =Rz +

3.1)
1- R} Roze-2int

In the elastic case, R2; does not equal R, and no further simplification takes place.

For an incident pressure wave that transmits a shear wave which remains a shear

R

wave in the sediment as shown in Figure 3.4, the ss wave, the contribution to R,3 is
PSSP oSS ,:
sg 312821 Rz e-2imst
1 =

S oSS ? (3.2)
1- 9‘%] Rz e-2inst
assuming phases @555 and @35S are zero.
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Table 3.1.

Reflection and Transmission Coefficients
for
Liquid/Elastic and Elastic/Liquid Boundaries

sin 6, sin 6,

_ P2cas

sin Gs

R =22 c0s2(264s) + Zas sin?(2635) - 21/

RE® =[ Z) - Z3 cos2(2655) + Z3s sin?(262) llp

R3S = [ 2, + 2, cos2(2635) - Zs sin?(2655) D

gt [2P1 % cOS(Zst)]/D

3P = [-201 Z2-5in260s)

SEP - [202 2 cos2629)]

33} =[-202 & sin26:9)]

D = Z, cos2(26y5) + Zys sin2(26ys) + Z;




26

Table 3.2.
Reflection Coefficients
for the
Elastic/Elastic Boundary
2 = packs e=2u; + Usbs
K3 = p3cs f=2(u2 - p3)
by = 1an?6ys — 1 g = Maba — b
b3 = tan?6ss — 1 h =243 + paby
p1 = e tan6; tanbys p2=gtan6
P3 = h tanBys tan6y P4 = -f tan6; tanbys tan6s
q1 = f tan6; tan6;s tanbss g2 = h 1an6; tanBss
q3 =—g tanbss qs =p1

9"2,; =[(p1-P3)(q2+44) - (P2+P4)(q1-93)JYDD

R33 = [~ (P1+P3)(q2—q4) + P2-Pa)(q1+43)DD

R35 =[2(p3q1-P19)VDD

R53 =[2(pag2-p244)VDD

DD =[(p1+p3)(@2+4a) - (P2+Pa)(q1+q3)]
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Table 3.3.

Energy Relationships for LEE Model

Liquid/Elastic

Pressure wave in water against solid

2 2 ta 2
| = 9‘1;!2’ +P2tan92 gk L P2 n6s 3P
pitan6, p1tan6;

Pressure wave in solid against water

PP2 ps2 tanf; _pp2
1= Rop + a0 P, PLIANDL ofF
tan6; patanb,

Shear wave in solid against water

s2 sp2 tanf, _sp2
1= ‘ﬁgl +_tln&_§(21 +..’.)_l___._1-321
tanb,s p2tanb;s

Elastic/Elastic

Pressure wave in sediment against basement

2 2 2 2
| = REF2, tanbys qPs?, patanbs qpe, pstanbss qps
tan6; patan6; p2tan6,

Shear wave in sediment against basement

2 2
1 = w57 120l GSE2, PN qofe, Patandhs o
tan6s p2tanbss patanbs
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Two combination shear/pressure waves are also included in R;3, the sp wave and
the ps wave. (There are many other combinations possible. The pp, ss, sp, and ps are the
only ones studied here.) The sp wave travels as indicated in Figure 3.5. Assuming its
phase changes at the boundaries @»35P and @, PP are zero, the sp contribution to R,3 is
SPSaTE R e-imte-itst

SP
Riz = PP PP ..
1 -Ry Ryze-2ixsd

(3.3)

Similarly from Figure 3.6 and setting &3PS and @;;5P equal to zero, the fourth component
of Ry3 is

g(*l’g - Sll’gsgl; 9‘1‘3 e-ixte=iKsyt 54
1 - R3] R e-2imst
Summing the four terms together gives for the LEE case
Rz = Rip + 31285 Koy e-2rr N 313331 K3 -2t
1- %G Ryse2imt  1-R3) Rose-2im (3.5)

PS o PP ,SP . . PP .. SP ..PS . .
. 812321 9‘238“‘7’6"“’+ 312321 Koz e-ixde-inst

PP . SS oSS __,;
1-Ra1 Rpze-2ims 1-Ra1 Roze-2imst

3.1.3. Incorporation of Attenuation into R;3 for the LEE Model

Just as in the liquid layers, signals in elastic layers are attenuated. The attenuation
in the sediment is dependent upon the length of the path traveled and will be included
everywhere in R;3 that the phase changes for the paths occur. The path distance traveled is

ras. The attenuation factor for the elastic sediment for s in dB/m kHz is

As = 10<°/10¢ 100075 (3.6)
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PS o SS o SP
812R72332;

6,
Figure 3.4, Reflection and Transmission Paths for the SS Series
PSSP o PP
312R2332
6,

Figure 3.5. Reflection and Transmission Paths for the SP Series
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PP, PS o SP
812R2332

Figure 3.6. Reflection and Transmission Paths for the PS Series

Due to the complex &, , k> and K»g are replaced by the following two equations.

Ky = Kj — iknEn/\ R . 3.7
Kas = K35 — iKknEnl )R . (3.8)
Making the following definitions and multiplying denominators by their complex
conjugates gives for R)3
SPP = giPgitRI%A2 3.9)
§SS = 13851 R3342 (3.10)
§SP = 3138 RBAAs | (3.11)
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SPS =3NS R3AAs | (3.12)
SPP =R RIGA2 (3.13)
S35 =R 3342 (3.14)
Eyg = e-katathd (3.15)
KZS = Kgsl . (317)
Riz= ‘Rlx)‘z, + SPP(EZe-2k-S77) 3
1 - (SEPEZ)cos2i) + (SEPED)
+ S SSEjs (e-2Kis-53%)
1 - (S5Ef9)cos(2rsn) + (SF°EZ)’ 3.18)

. SSPEzse-iK,,(Eze-iK;_sgPE;leiKz)
1 - (SEPER)cos2ikt) + (SEPED)’
. S PSE,e~iKa(Ese-iKi—S$SEd eiis)

1 - (535E3s)cos2idl) + SSEL)®

3.1.4. Substitution of R;; into the LEE Characteristic Equation

Making a few more definitions and placing (3.18) into (1.15) gives the LEE

characteristic equation (3.21).

Dent = 1 - (SEPED)cos2xe) + (STPER)? . (3.19)
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Den2 = 1 - (S§5EX)cos2xin) + (S$5EZ0)? . (3.20)

— R RGEZe-i2Ki+ @)

gi‘)’fl (ERERe-i2K1+2K1 8) _ SEPELe iK1+ o)
9;1; jp (E2E Epse-i@Ki+Ka+Kns+ @) _ SEPE2E1E ) co-i(2K:-Ka+Kas+ B0))
_91‘):1; ° (E2EyEqse-i2Ki+Ka+Kas+ &) _ stEszE;sle-i(ZKx+Kz-K=+4’t)) =0.

Two approaches were taken to solve this complex function of both k, and &,. First,

Newton’s method for nonlinear systems, and second, the factoring technique.

3.2. Solving the LEE Exact Equation with Newton’s Nonlinear Method

To solve the LEE characteristic equation using Newton’s Method for nonlinear

systems as described in section 1.3, the equation must be broken into its real and imaginary

parts to give two equations for the two unknowns, k, and &,. The Jacobian for these two

equations must also be determined. Since the calculations are done by computer, a

discussion of some of the computational pitfalls is also included.

The imaginary part of (3.21) gives for F1:

F1 = 0 = R, R}2E2sin(2K; + Dy)

9]‘;:11 [EzEzsln(2K1+2Kz+¢1) Ssz sin(2K+ )]

91; > (E2E3sin(2K 1 +2K 25+ @) — S5 E3sin(2K + )] (3.22)
?)le —S3PE2E;  Epssin(2K 1Ko +K 25+ 1))
R,S

+

[E%Ezszssin(le+K2+xzs+d>,)-sSSEszts;;sin(zx,+xz-xzs+q>,)] ,
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and the real part gives F2:

F2=0=1-R,R13E2cos(2K 1 +Py)

9;)‘: : [E2EZcos(2K) +2K 2+ ®1) — SYPE2cos(2K 1+ Py)]
9]‘)‘:[12 [E3EZscos(2K1+2K 25+ D) — S35 E2cos(2K )+ Py)) (3.23)
9;)’: [E}E2E25c08(2K 1 +K2+K 25+ P)-S5T E2E;  Egscos(2K1—K 2+ Kas+Py)]
—9;‘;2 [ETE2E25008(2K 1 +K 24K 25+ @) -5 E2ESE55c0s (2K 14K K5+ D1)] .

To form the Jacobian matrix for this pair of equations, derivatives of F1 and F2
with respect to k, and &, are needed. These derivatives are quite complicated due to the
many products and quotients involving the x’s which depend on both k, and &, Also the
reflection and transmission coefficients depend on x’s. Since the inverse of the Jacobian is
only a focusing mechanism to the next guess, the derivatives were simplified by treating the
coefficients as constants. The penalty for this is a probable increased number of iterations
necessary to find the eigenvalues.

Newton’s method works well if the slope of a function is steep enough near a root
and the initial guess is close enough. When working with complicated functions such as
(3.22) and (3.23), especially when it is not easy to sketch the functions, finding the roots
becomes a difficult task. Initial guesses must be very close or roots will be missed.

The roots found by the factoring technique discussed below were used as the initial
guesses. Since these were not always good enough to find all the exact roots, the program
also used guesses in between the factored roots. Due to slow convergence, round-off
error, and insufficient guesses, some roots were still missed. See Appendix for program
listing.

To determine if the factored eigenvalues generated by the program were reasonable,
the results were compared to those produced by RAYMODE using the same input
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parameters. RAYMODE, a commly used propagation loss program, was altered to have
the same reflection coefficients as used here and the agreement of the two programs was

very good.
3.3. Factoring the LEE Characteristic Equation

The factoring technique described in section 1.3 can be used on (3.21) with the
introduction of some product errors. Resulting are five factors to be called the water and

sediment pp, ss, sp, and ps factors.
3.3.1. The LEE Water Equation

From (3.21), the water equation for the LEE case is
(1 - R, RPEZe-i2Ki+ ) (3.24)

Taking the real and imaginary parts to form two new equations leads to the water solutions.

214
k,.=[k§- (_2%;&) ] . (3.25)

. (3.26)

_ e, xf

The LEE water solutions differ from the LLL water solutions only in the R2PP factor.
3.3.2. The LEE Sediment Equations

From (3.21), the pp, ss, sp, and ps factors can be written. The method for solving
cach equation is the same. Take the real and imaginary parts of the equation to form two
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equations. Solve the imaginary equation for &, using Newton’s method for one variable

and substitute the result into the real equation solved for €,. The solutions to the sediment

factored equations are
PP 2,212 2 . 2\12

FY%(kp) = 2h(ki—-k%) ~+ 2t(k5—k5) +D1-2nmw =0, (3.27)
eFP = ‘ In (R,SPP) 1 l . (3.28)

2kn (p + 1t )
FSS(kn) = 2h02—k2) 24 2002—k2) 24 @y 20 =0, (3.29)
S = ’ In(R,S55S) 1 l . (3.30)

2kn (Mt + 1k )

FSP(k,) = FPS(k,) = 2h(kf-k,%)l/2+t(k§—-k})l/2+t(k§s—k3)l/2+ &, -2nm =0, (3.31)

£3F =|In(R,S5P) , (3.32)

i
kn (M + 1 + 1)

€S = 1In(R,5P9) (3.33)

1
kn (Pt + 1+ Vot)

3.4. Comparison of Factored to Exact Solutions

As with the LLL model, extreme parameter sets were chosen tc force the exact solutions to
either the water or various sediment path solutions. For the force to water test, a high
density and sound speed are used. Figure 3.7 shows the agreement between the water
solutions above the critical angle and the exact solutions. To encourage the sediment
paths, similar sound speeds for water and sediment are entered for all three runs. For the
Pp path, a small sediment attenuation and a high sediment shear attenuation result in the
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exact solutions being equivalent to the pp solutions as shown in Figure 3.8. Increasing the

pressure wave attenuation for the sediment while decreasing the shear wave attenuation

enhanced the shear paths as shown in Figure 3.9.

LEE Forcing Water Solutions to Exa
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Figure 3.7. LEE Force of Water Solutions to Exact Solutions
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Figure 3.8. LEE Force of Sediment PP solutions to Exact Solutions

LEE Forcing Shear Solutions to Exact Solutions
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Chapter 4

RESULTS

A comparison of the eigenvalues generated by the exact solutions and the factored
solutions in both the LLL and LEE models was conducted for four types of sediments: a
fine fluid, a medium, a hard, and a semiconsolidated sediment. Some typical sediments
that fall into these classes are silty clay, till and sand, coarse sand and gravel, and chalk and
shale. Table 4.1 lists the numbers used for the sound speeds and attenuation coefficients
for the water, sediments and bedrock (Hamilton 1980, pp. 1326) (Stoll 1986, pp. 429)
(Clay and Medwin 1977, pp. 258) (Beebe 1981, pp. 78, 94, 115, and 130).

Two criteria are used to evaluate the factored solution eigenvalues: placement on the
eigenvalue plot of —log(Imlg,!) vs. &, , and a mode summation comparison between
factored solutions and exact solutions. An approximate pressure mode summation equation
(4.1), adapted from Clay and Medwin’s (9.2.29), is an incoherent sum for a source and

-receiver located at the same depth. The depth, z, is 100m and the horizontal range, 7, is
10km for the calculations. A log ratio of the water (w) plus sediment pp (s) solutions sums
divided by the exact (e) solutions multiplied by 10 gives the mode sum comparison in dB
asin (4.2). The closer the mode sum is to zero, the better matched the factored solutions

are to the exact solutions.

#of modes (0o5(kR , 02)sin(kR 5 2)e1e |

Myse = 4.1)
e n=1 (k,:{r)”2
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Table 4.1.
Geoacoustical Parameters for Water, Sediments, and Bedrock
Layer P c (/1 Cs s
(g/em3) (m/s) (dB/m kHz) (ny/s) (dB/m kHz)
Water 1.0 1500
Fine Fluid 1.4 1470 0.01 250 15.0
Medium 1.9 1600 0.03 450 13.0
Hard 2.0 1720 0.003 650 10.0
Semiconsolidated | 2.1 2400 0.05 1000 1.0
Bedrock 2.7 5500 0.05 2900 (0.07)
mode sum comparison = 10 log M, + M, . (4.2)

m
4.1. The LLL and LEE Reflection and Transmissions Coefficients

It is useful to examine the plots of the reflection and transmission coefficients in

Figures 4.1-4.5, made for a medium sediment at 30 Hz. Some of the coefficients affect the

eigenvalues drastically so it is important to see their behavior.

Figures 4.1 and 4.2 compare the LLL R;; and R2; with the LEE R;,PP and
R23PP. There is little difference between the two Ri2’s, the highest difference being for

the lowest modes, or highest k, ’s. R23 is equal to one over most of the k, range
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Figure 4.1. Comparison of LLL R, and LEE R,FP
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while R,3PP is not constant or even smooth. At the lowest modes the falloff of Ry3PP is

most important. The swings in R,3PP affect the shape of the LEE sediment pp solutions

more than the exact solutions.

Figures 4.3-4.5 display the rest of the LEE coefficients. Figure 4.3 shows the

extreme difference between R, PP and R;,5S for the LEE case. From this plot, it is easy

to see how the shear waves are attenuated quickly. Figure 4.4 shows the LEE R35S,

R235P and R3PS coefficients. They, like Ry3PP, are not smooth, but their peaks and dips

fall in the region of low k,. Figure 4.5 displays the LEE transmission coefficients.

| R21| vs. Re(eigenvalue)
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4.2. LLL Model Results

The first study compares not only the differences between the four types of
sediments, but also tests variations with frequency and sediment thickness. Four
combinations of thickness and frequency are examined: low thickness (10m) and low
frequency (10Hz), low thickness and high frequency (50Hz), high thickness (200m) and
low frequency , high thickness and high frequency.

4.2.1. General Trends

From (2.35), the expression for the number of modes in a duct, it is evident that
with increased frequency or water depth there will be an increased number of modes.
Consequently frequencies above 50 Hz were not studied to keep the number of modes
manageable. The water depth for this study was arbitrarily kept constant at 700m.
Comparing Figures 4.6 and 4.7 with 4.8 and 4.9 shows the expected increase in mode
number for a frequency increase.

For the larger sediment thickness , the sediment mode attenuation is greater than for
the smaller thickness case. The wave travels further in the sediment and is therefore more
attenuated. Also, there is more attenuation in the higher frequency runs because the

attenuation factor A goes up with frequency.

4.2.2. Comparison of Factored Solutions to Exact Solutions

As can be seen in Figures 4.6-4.9, the mode attenuation, or I&,l, is greater for both factored

solutions than for the exact solutions. One of the factored solutions should have nearly the
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equivalent mode attenuation of the exact eigenvalues so it may be used in place of the exact
solutions. From Table 4.2, the mode sum comparisons are too high, as high as 30 dB for
the semiconsolidated 10Hz, 10m case.

Since the water factor yields solutions that are straight forward to calculate, it will

not be changed. An adjusted sediment factor is needed.
4.2.2.1 Derivation of the New LLL Sediment Factor

The sources of error in the sediment factor are the product term added to the left
side of the characteristic equation as described in section 1.4 and setting S7 equal to zero in
section 2.3.2. Keeping S in the equatioﬁ did not improve the results. To change the
sediment factor, keep the water factor, and yet remove the error, a new sediment factor was
developed by dividing the characteristic equation by the water factor:

(1 - R R3e-2K1)
(1 - R Re-2K1)

4.3)

Writing the denominator as a geometric series, expanding that series, and multiplying gives
(1 - R R3e-2K1 + R Rpe-2iK1 9‘%9‘129‘138‘4”(1 + 9‘%9‘%28‘4‘.’(‘ --.). (4.4)

After substitution for R,3, the positive terms in R, drop out leaving

R1312R238142
1 - Ry R34 2e-2K1

1-

(14 Ry Rype-2K1 + RERDpe4iki 4. |20tk +K2)_ (4.5)

The new sediment factor is to be of the form
1-Ce2iK1+Ka) 4.6)

where C, with the denominator expanded, is
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C= 9‘13129‘23321A2 [1 + R Rye-2K1 + Skfs)tfze-um +.. ] X

4.7
[1 — R 1pR23A 2e-2iK2 + RIR314 4Kz — .. ] _ 4.7)

In order to obtain a smooth mode attenuation, 2K is approximated as much larger than
2K, which amounts to 4 being much larger than . The eigenvalues of this factor with
combined phase K1+K2 will be very close to those of the water factor, since the sediment
phase is very small. Both exponentials e-2iK: and e-2iX: are approximated as unity in the

magnitude of C.
1Cl= R18 13 R2532142 [ 1 + R Ryz + K2 [1 - RioRsA? + REREs44] . 4.8)

Both series work best truncated to quadratic form as in (4. 8). Higher orders gave mode
attenuations of the wrong sign, indicating the sums were diverging. The original sediment

factor has the two terms in brackets equal to unity.

4.2.2.2 Comparison of New LLL Sediment Factor with Exact Solutions

From Figures 4.6-4.9 the new sediment factor &,’s are much closer to the exact
&.’s. Table 4.2 confirms the improvement with much smaller mode sum comparisons.
The new sediment factor works very well for the fine fluid, medium, and hard sediments,

but is not improved enough for the semiconsolidated sediment.
4.3. LEE Model Results

The tests on the LEE model were done for a constant low frequency (30Hz) since
the affects of frequency have already been shown in the LLL study. Two sediment depths,
10m and 300m, were examined for a water depth 900m. The results are shown in Figures
4.10-4.11 and Table 4.3.
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Table 4.2.
LLL Mode Sum Comparisons in dB with Sediment and New Sediment Factors
10m, 10Hz 10m, 50Hz
Sediment  New Sediment| Sediment  New Sediment
Fine Fluid -2 0 -2 | 0
Medium -13 -1 -11 0
Hard =21 -2 -19 -2
Semiconsolidated =30 -9 -14 -9
200m, 10Hz 200m, 50Hz
Sediment  New Sediment| Sediment  New Sediment
Fine Fluid -2 0 -1 1
Medium -9 -1 -7 1
Hard -15 -1 -14 0
Semiconsolidated =27 -9 —4 —4
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There are four sediment factors, pp, ss, sp, and ps. The pp mode attenuation has a
dip and peak corresponding to the dip and peak in the R23PP plot in Figure 4.2. The ss,
ps, and sp mode attenuations are much lower than the pp. The ps and sp solutions are
actually equivalent since their coefficient products, 3 12PSR235P3,; and 8 15,R23P53,,SP
are equivalent.

The water and sediment pp solutions are the best approximation to the exact
solutions. The ss and ps/sp solutions are usually highly attenuated since 3,PS and 35,5P
are small, and can be left out of the LEE model. The dips and peaks in the sediment pp
solutions are cause for concem when the using the factors in place of the exact.

The program missed some of the modes for the LEE exact case. The accuracy of
mode sum comparisons, which include only the water, sediment pp, and exact solution
sums as in the LLL case, is thus somewhat limited.

A new LEE sediment pp was developed analogous to the one for the LLL new
sediment factor. With both series linear, quadratic, cubic, fourth order and various
combinations of those, &,’s of the wrong sign were generated. Also the mode attenuation

plot was not smooth, so the method of correction was abandoned.

4.4. Comparison of LEE Model to LLL Model

Figures 4.12-4.13 compare the LLL and LEE water and sediment pp solutions.
The water factors for the LEE and LLL models are nearly identical for identical input
parameters. This is expected since R is the same for both and R;,F} for the liquid/elastic
boundary is nearly equal to R, for the liquid/liquid boundary as shown in Figure 4.1.
Consequently, the LLL water factor can be -sed in a LEE model.
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Table 4.3.
Approximate LEE Mode Sum Comparisons in dB
10m, 30Hz 300m, 30Hz
Fine Fluid 6 2
Medium 8 10
Hard 8 3
Semiconsolidated 16 7

The sediment solutions do not propagate as well in the LEE environment as they did

in the LLL environment due to the added shear loss. R23PP is not equal to one for the LEE
case as it was for the LLL case as shown in Figure 4.2, but instead has dips and peaks,

thus changing the shape of the sediment pp solutions.
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Chapter 5

CONCLUSIONS

Approximate solutions for the three layer duct characteristic equation were
developed for quickly obtaining the eigenvalues. The LLL model factors are both quick
and a good approximation of the LLL exact solutions. The LEE factored solutions are also
easy to calculate, but the loss of accuracy may outweigh the benefits of speed.

The method of factoring described in section 1.4 was applied to both the LLL and
LEE characteristic equations. The factored solutions were then compared to the exact
solutions for each model. Also the LLL and LEE factored solutions were compared to each
other. Variations in sediment, sediment thickness, and frequency were examined.

The LLL factored solutions predicted losses much higher than the LLL exacts. A
new sediment factor was then developed, based on the characteristic equation and the water
factor. The losses for the new factor are much closer to the losses of the exact solutions
with the best results for the fine fluid, medium, and hard sediments. The losses of the new
factor for the semiconsolidated sediment, which favors the water path, were improved, but
not as much as the others.

The factored solutions for the LEE model also predicted more losses than the LEE
exact solutions. Attempts to correct the sediment pp factor proved inadequate. Even
though this LEE factoring scheme predicts too much loss, using it may still be better than
using a LLL model which would predict far too little loss for an elastic sediment.
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APPENDIX

COMPUTER PROGRAM LISTING

The following computer listing is a program that finds the eigenvalues for the LLL
water, sediment, new sediment, and exact solutions. Also it finds the LEE water, sediment
PP, ss, sp, and ps, and exact solutions. The program is written in HP BASIC. The
symbols and variable names used in the program do not necessarily match the symbols

used in the text.

RAD

OPTION BASE 1
GINIT
GCLEAR
GRAPHICS ON

DIM Kw(90), Ew(90), Ks(90), Es(90), Ksm(90), Esm(90), Kn(90), En(90)
DIM Kw1(90), Ew1(90), Kw2(90), Ew2(90)

DIM Kw3(90), Ew3(90), Kw4(90), Ew4(90), Kn1(90), En1(90)

COM  /Parameterl/ C1, C2, Rhol, Rho2, H, T, Freq, Alfa2, R1, R1lphase
COM  /Parameter2/ C2s, C3, C3s, Rho3, Alfa2s

OOM /Wavenumber/ W, K1, K2, K2s, K3s

C1=1500
C3=2900
Rhol=1.0
Rho3=2.7
H=900
T=10
Freq=30
R1=0.99
Rlphase=PI

CALL Labeldaxes(1)

FOR Diffcase=1 TO 4
SELECT Diffcase
CASE 1
C2=1470
C2s=250
Rho2=1.4
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Alfa2=0.01
Alfa2s=15.0
CASE 2
C2=1600
C2s=450
Rho2=1.9
Alfa2=0.03
Alfa2s=13.0
CASE 3
C2=1720
C2s=650
Rho2=2.0
Alfa2=0.03
Alfa2s=10.0
CASE 4
C2=2400
C2s=1000
Rho2=2.1
Alfa2=0.05
Alfa2s=1.0
END SELECT

W=2*PI*Freq
K1=W/C1
K2=W/C2
K3=W/C3
K2s=W/C2s
K3s=W/C3s

ALPHA ON
OUTPUT KBD;“ K",

CALL Water(Kw(*),Ew(*),Nmodew,“l1l1”,*“0”,Nofextras)
CALL Water(Kw1(*),Ew1(*),Nmodelw,“lee”,“0”,Nofextras)

CALL Sed(Ks(*),Es(*),Kw(*),Nmodes,Nmodew,“liI”,* pp”,"“+"”,Nofextras,*s ™)

CALL Sed(Ksm(*),Esm(*),Kw(*),Nmodems,Nmodew,"“lim”,* pp”,“u” ,Nofextras,“sm”)
CALL Sed(Ks1(*),Es1(*),Kw1(*),Nmodels,Nmodelw,“lee”,” pp”,*+”,Nofextras,“s1”)
CALL Sed(Ks2(*),Es2(*),Kw1(*),Nmode2s,Nmodelw, lee”,” ss”,“*” Nofextras,“s2”)

CALL Sed(Ks3(*),Es3(*),Kw1(*),Nmode3s,Nmodelw,“lee”," sp”,“x” ,Nofextras,“s3")

CALL Sed(Ks4(*),Es4(*),Kw1(*),Nmoded4s,Nmodelw, lee”,” ps”,“-",Nofextras,* s4")

CALL Exact(Kn(*),En(*),Kw(*),Ew(*),Ksm(*),Esm(*),Nmoden,Nmodew ,Nmodems,
“111”,“A” Nofextras,Diffcase)

CALL Exact(Kn1(*),En1(*),Kw1(*),Ew1(*),Ks1(*),Es1(*),Nmodeln,Nmodelw,
Nmodels,“lee”,“n”,Nofextras,Diffcase)

CALL Sort(Kn(*),En(*),Nmoden)
CALL Sort(Kn1(*),En1(*),Nmodeln)

CALL Nat_log_e(Ew(*),Ln_ew(*),Nmodew)
CALL Nat_log_e(Es(*),Ln_es(*),Nmodes)
CALL Nat_log_e(Esm(*),Ln_esm(*),Nmodems)
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CALL Nat_log_e(En(*),Ln_en(*),Nmoden)

CALL Nat_log_e(Ew1(*),Ln_ew1(*),Nmodelw)

CALL Nat_log_e(Es1(*),Ln_es1(*),Nmodels)

CALL Nat_log_e(Es2(*),Ln_es2(*),Nmode2s)

CALL Nat_log_e(Es3(*),Ln_es3(*),Nmode3s)

CALL Nat_log_e(Es4(*),Ln_es4(*),Nmode4s)

CALL Nat_log_e(En1(*),Ln_en1(*),Nmodeln)

CALL Fouraxes(5,Diffcase)

CALL Ln_e_vs_k_plot(Kw(*),Ew(*),Ln_ew(*),Nmodew,5,”0”")
CALL Ln_e_vs_k_plot(Ks(*),Es(*),Ln_es(*),Nmodes,1,”+")

CALL Ln_e_vs_k_plot(Ksm(*),Esm(*),Ln_esm(*),Nmodems,4, "u")
CALL Ln_e_vs_k_plot(Kn(*),En(*),Ln_en(*),Nmoden,7,”A")

CALL Ln_e_vs_k_plot(Kw1(*),Ew1(*),Ln_ew1(*),Nmodelw,6,”0")
CALL Ln_e_vs_k_plot(Ks1(*),Es1(*),Ln_es1(*),Nmodels,3,”+")
CALL Ln_e_vs_k_plot(Ks2(*),Es2(*),Ln_es2(*),Nmode2s,4,”*")
CALL Ln_e_vs_k_plot(Ks3(*),Es3(*),Ln_es3(*),Nmode3s,5,”x")
CALL Ln_e_vs_k_plot(Ks4(*),Es4(*),Ln_es4(*),Nmodeds,7,”-")
CALL Ln_e_vs_k_plot(Kn1(*),En1(*),Ln_en1(*),Nmodeln,2,”n")

PRINT “LLL Mode Sum”

CALL Incohmt(Kw(*),Ew(*),Ks(*),Es(*),Kn(*),En(*),Nmodew,Nmodes,Nmoden,
Indbex,Nofextras) .

PRINT “LLL Mode Sum with New Sediment Factor”
CALL Incohmt(Kw(*),Ew(*),Ksm(*),Esm(*),Kn(*),En(*),Nmodew,Nmodems,
Nmoden,Indbex,Nofextras)

PRINT “LEE Mode Sum”
CALL Incohmt(Kw1(*),Ew1(*),Ks1(*),Es1(*),Kn1(*),En1(*),Nmodelw,Nmodels,
Nmodeln,Indbex,Nofextras)

NEXT Diffcase
END

SUB Water(Kw(*),Ew(*),Nmodew,Type$,Sym$,Nofextras)

OOM  /Parameterl/  Cl1, C2, Rhol, Rho2, H, T, Freq, Alfa2, R1, Rlphase
OOM  /Wavenumber/ W, K1, K2, K2s, K3s _
Frmt1:IMAGE 4X,4A,2D,4A,SD.4DE,5X,4A,2D,4A,SD.4DE,3X,D.2D,5X,2D.D
INTEGER N,M,I

FOR I=1 TO 90

Kw(1)=0.0
NEXT I
PRINT .
PRINT TAB(19);“WATER ":Type$:" SOLNS";Sym$;" R Phil”
PRINT

Nofextras=0
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Nmodew=0
N=1

WHILE ((2*N*PI-R1phase)/(2*H))<=K1

Kw(N)=SQR(K 12—((((2*N*PI-R 1phase)/(2*H))*2)
Kappal=SQR(K1/2-Kw(N)*2)

IF (K2A2-Kw(N)*2)<0 THEN
Kappa2=0
Noextras=Noextras+1

ELSE
Iéappa2=SQR(K2"2-Kw(N)’\2)

Phil=ACS(Kw(N)/K1)*180/PI
Z12=(Rho1*Kappa2)/(Rho2*Kappal)
R121i=(1-Z12)/(1+Z12)

Nmodew=Nmodew+1
M=Nmodew
Kw(M)=Kw(N)

SELECT Type$
CASE “II”
Ew(M)=LOG(ABS(R1*R1211))*Kappal/(Kw(M)*2*H)
PRINT USING Frmt1; Kw(",M,*) = *,Kw(M),"* Ew(’,M,*) = ”,Ew(M),

R1211,Phil
CASE “lee”

IF (K2s"2-Kw(N)*2)<=0 THEN
R12le=1

ELSE
Kappa2s=SQR(K2s"2-Kw(N)*2)
Phi2s=ATN(Kappa2s/Kw(N))*180/P1
R12num=(-Z12+1-(SIN(2*Phi2s))*2*(1-Kappa2/Kappa2s))
R12den=(Z12+1—-(SIN(2*Phi2s)}*2*(1-Kappa2/Kappa2s))
R12le=R12nunmy/R12den

END IF

Ew(M)=LOG(ABS(R1*R12le))*Kappal/(Kw(M)*2*H)
PRINT USING Frmtl;“Kwl1(’,M,*) =" Kw(M),“Ew1(”,M,*) = " Ew(M),
R12le,Phil
END SELECT
=N+1
END WHILE
PRINT
SUBEND

SUB Sed(Ks(*),Es(*),Kw(*),Nmodes,Nmodew,Type$,Kind$,Sym$,Extras,S$)
Frmtl: IMAGE 4X,SD.3DE,6X,2D,SD.3DE,5X,D.3D,3X,D.2D,3X,D.2D,4X,2D.D
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Frmt2: IMAGE 4X,SD.3DE,6X,2D,SD.3DE,5X,D.3D,2X,2D.2D,3X,2D.2D,3X,
2D.2D,3X,2D.D
Frmt5: IMAGE 8X,A,2A,10X,A,10X,A,2A,9X,5A,3X,3A,4X,3A 4X 4A
Frmt6: IMAGE 8X,A,2A,10X,A,10X,A,2A,9X,5A,3X,3A,5X,3A,5X,3A,3X 4A
Frmt7: IMAGE 8X,A,2A,10X,A,10X,A,2A,9X,5A,2X,5A,2X,5A,2X,5A,3X 4A

COM  /Parameterl/  Cl, C2, Rhol, Rho2, H, T, Freq, Alfa2, R1, Rlphase
COM  /Parameter2/  C2s, C3, C3s, Rho3, Alfa2s
COM  /Wavenumber/ W, K1, K2, K2s, K3s

INTEGER Mm, Num_divs, N, M, Stepslow, Nn

PRINT
PRINT TAB(16);“SEDIMENT ”;Type$;** SOLNS”;Sym$
PRINT

SELECT TYPE$
CASE “llI”
PRINT USING Frmt5;“K”,S$,“N”,“E”,S$,“Atten”,“R12"”,“R23”,“Phil”
CASE “llm”
PRINT USING Frmt5;“K”,S$,“N”,“E”,S$,“Atten”,“R12”,“R23”,“Phil”
CASE “lee”
SELECT Kind$
CASE “ pp”
Cpgslg-r USING Frmt6;“K”,S$,“N",“E",S$,“Attcn",“R23",“T12pp",“T2lpp”,“Phi1"
“ SS"
(;I}SINT USING Frmt7;*K”,S$,“N”,“E”,S$,“Atten”,“R23ss”,“T12ps”,“T21sp”,“Phil”
E . spn
é’}\!slg'l' USING Frmt7;“K”,S$,“N”,“E",S$,"“Auen”,“R23sp”,“T12ps”,“T21pp”,“Phil”
. psn
PRINT USING Frmt7;“K”,S$,“N",“E",S$,“Atten”,“R23ps”,“T12pp”,“T21sp”,“Phil”
END SELECT
END SELECT

Onum_divs=Nmodew-Extras
Max_iters=40
Nmodes=0

FOR I=1 TO 90
Ks(1)=0.0
NEXT1

Nn=1

REPEAT
X=MIN(0.9999*K1,0.99999*K2)
Kappal=SQR(K1/2-X*2)
Kappa2=SQR(K2/2-X"2)
Kappa2s=SQR(K2s72-X"2)
Phase=2*Nn*PI-R 1phase

IF Kind$=" pp” THEN
Fs=2*H*Kappal+2*T*Kappa2-Phase
ELSE




IF Kind$=" ss” THEN
Fs=2*H*Kappal +2*T*Kappa2s—Phase
ELSE
Fs=2*H*Kappal+T*(Kappa2+Kappa2s)-Phase
END IF
END IF

Nn=Nn+1
UNTIL Fs<0 OR Nn>=90

Nstart=Nn-1
=Nstart

Stepslow=1

Rootsave=10000

IF Kind$=" pp”THEN
Tst=2*H*K1+2*T*K2
ELSE
IF Kind$=" ss” THEN
Tst=2*¥*H*K14+2*T*K2s
ELSE
Tst=2*H*K1+T*(K2+K2s)
END IF
END IF

FOR Stepslow=Stepslow TO Nmodew+1-Extras
IF Stepslow=1 THEN
Kstart=Kw(Stepslow+Extras)
Ks_ip1=MIN(0.9999*K1,0.99999*K2)
ELSE
IF Stepslow<Nmodew+1-Extras THEN
Kstant=Kw(Stepslow+Extras)
Ks_ip1=Kstart=Kw(Stepslow—1+Extras)

ELSE
Kstart=1.E4
Ks_ip1=Kw(Stepslow—1+Extras)
END IF
END IF

Num_divs=INT(Onum_divs*(1 +Stepslow/(Nmodcw+l))/Freq*O. 1))
Kstep=(Ks_ip1-Kstart)/Num_divs

FOR L=1 TO Num_divs
Num_iters=0
Phase=2*N*PI-R 1phase
If Tst<Phase THEN Sub_sed_end
Ks_ip1=Kstart+(L-1)*Kstep

REPEAT
Ks_i=Ks_ipl
Kappal=SQR(K1/2-Ks_i"2)
Kappa2=SQR(K2/2-Ks_i*2)
Kappa2s=SQR(K2s"2-Ks_i*2)
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Sign1=SGN(K1/2-Ks_i*2)
Sign2=SGN(K2/2-Ks_i*2)
Sign2s=SGN(K2s"2-Ks_i*2)

IF Kind$=" pp” THEN
Fs=2*H*Kappal*Sign1+2*T*Kappa2*Sign2-Phase
Fsprime=-2*Ks_i*(H/(Kappal*Sign1)+T/(Kappa2*Sign2))
ELSE
IF Kind$=" ss” THEN
Fs=2*H*Kappal*Sign1+2*T*Kappa2s*Sign2s—Phase
ELSE Fsprime=-2*Ks_i*(H/(Kappal*Sign1)+T/(Kappa2s*Sign2s))
Fs=2*H*Kappal+T*(Kappa2*Sign2+Kappa2s*Sign2s)-Phase
Fsprime=-Ks_i*(2*H/(Kappal*Sign1)+T/(Kappa2*Sign2)

+T/(Kappa2s*Sign2s))
END IF
END IF
IF ABS(Fs)>10000 THEN Nxtl

Ks_ipl=Ks_i-Fs/Fsprime
IF Ks_ipl1>Rootsave THEN Ks_ip1=Rootsave
Num_iters=Num_iters+1

UNTIL ABS(Fs)<=1.E4 OR Num_iters>=Max_iters

IF Num_iters>=Max_iters THEN
PRINT “Max iterations”
ELSE
IF Ks_ip1>MIN(0.9999*K1,0.99999*K2) THEN Nxtl
M=N-Nstart+1
Ks(M)=Ks_ipl
Rootsave=Ks_ip1

FOR Mm=1 TO Nmodes
Testy=ABS(Ks(M)-Ks(Mm))
IF Testy<=0.00001 THEN Nxtl
NEXT Mm

Nmodes=Nmodes+1
IF Nmodes=1 THEN PRINT

Phil=ATN(Kappal/Ks(M))
Phi2=ATN(Kappa2/Ks(M))
Rng=T/SIN(Phi2)

D=Rho1/Rho2

P=Kappa2/Kappal

Z12=D*P
Z23=(Rho2/Rho3)*(Kappa3/Kappa2)
R121=ABS((1-Z12)/(1+212))
R231=ABS((1-Z23)/(1+223))

SELECT Type$
CASE “III”



Atten=10M-2*Rng*Freq*Alfa2/10000)

S=Atten*(1-R121172)*R23ll

PRINT USING Frmt1;Ks(M),M,Es(M),Atten,R1211,R2311,Phil
CASE 6611m”

Atten=10(-2*Rng*Freq* Alfa2/10000)

S=Atten*(1-R1211*2)*R23lIl

MagC=R1*S*(1+R1*R1211+R142*R1211°2)*(1-R1211*R2311*Atten+

R12]172*R2311A2*Atten”2)

PRINT USING Frmt1;Ks(M),M,Es(M),Atten,R1211,R2311,Phil
CASE “lee”

SELECT Kind$

Phi3=ATN(Kappa3/Ks(M))

Phi2s=ATN(Kappa2s/Ks(M))

Phi3s=ATN(Kappa3s/Ks(M))

Rngs=T/SIN(Phi2s)

B12=1-(SIN(2*Phi2s))*2*(1-Kappa2/Kappa2s)

R12le=(-Z12+B12)/(Z12+B12)

T12=2*D*COS(2*Phi2s)/(Z12+B12)
T21=2*P*COS(2*Phi2s)/(Z12+B12)
T12ps=—4*D*(COS(Phi2s)A2)*TAN(Phi2)/(Z12+B12)
T21sp=—4*P*(COS(Phi2s)*2)*TAN(Phi2s)/(Z12+B12)

R21den=SIN(Phil)*((C2/C2s)*COS(2*Phi2s)*2+SIN(2*Phi2)*
SIN(2*Phi2s)*(C2s/C2))+(C2*C1*Rho 1*SIN(Phi2))/(C2s*C2*Rho2)
R21=((SIN(Phi1)*((C2/C2s)*COS(2*Phi2s)*2-SIN(2*Phi2)*
SIN(2*Phi2s)*(C2s/C2))—(C2*C1*Rho1*SIN(Phi2))/
(C2s*C2*Rho2)))/R21den
R21ss=((SIN(Phil)*((C2/C2s)*COS(2*Phi2s)*2-SIN(2*Phi2)*
SIN(2*Phi2s)*(C2s/C2))+(C2*C1*Rho1*SIN(Phi2))/
(C2s*C2*Rho2)))/R21den
R21ps=-2*SQR(SIN(2*Phi2)*SIN(2*Phi2s))*COS(2*Phi2s)*SIN(Phil)*
SIN(2*Phi2)/SIN(2*Phi2s))*(C2s/C2)/R21den
R21sp=-2*SQR(SIN(2*Phi2)*SIN(2*Phi2s))*COS(2*Phi2s)*SIN(Phil)*
SIN(2*Phi2s)/SIN(2*Phi2))*(C2/C2s)/R21den

Tan2=Kappa2/Ks(M)
Tan3=Kappa3/Ks(M)
Tan2s=Kappa2s/Ks(M)
Tan3s=Kappa3s/Ks(M)
Mu2s=Rho2*C2s"2
Mu3s=Rho3*C3s"2

P1=(2*Mu2s+Mu3s*(Tan3s"2-1))*Tan2*Tan2s
P2=(Mu2s*(Tan2s"2-1)-Mu3s*(Tan3s*2-1))*Tan2
P3=(2*Mu3s+Mu2s*(Tan2s"2-1))*Tan3*Tan2s
P4=2*(Mu3s-Mu2s)*Tan3*Tan2*Tan2s

Q1=2*(Mu2s-Mu3s)*Tan3*Tan2*Tan2s

Q2=(2*Mu3s+Mu2s*(Tan2sA2-1))*Tan3s*Tan2

81=_((—-Mu23*(1‘ an2s72—-1))+(Mu3s*(Tan3s"2-1)))*Tan2s
=P1
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Denomin=((P1+P3)*(Q2+Q4)-(P2+P4)*(Q1+Q3))
R23pp=(((P1-P3)*(Q2+Q4)—(P2+P4)*(Q1-Q3))/Denomin)
R23ss=(((P2-P4)*(Q1+Q3)—(P1+P3)*(Q2-Q4))/Denomin)
R23sp=(2*(P3*Q1-P1*Q3)/Denomin)
R23ps=(2*(P4*Q2-P2*Q4)/Denomin)

CASE “ pp"’
Coefs=R1*R23*T12*T21
Atten=10/(-2*Alfa2*Freq*Rng/10000)
Es(M)=LOG(ABS(Coefs*Atten))/(2*Ks(M)*(H/Kappal+T/Kappa2))
CASEPRINT USING Frmt2;Ks(M),M,Es(M),Atten,R23,T12,T21,Phil
(13 Ss"
Coefs=R1*R23ss*T12ps*T21sp
Atten=107(-2*Alfa2s*Freq*Rngs/10000)
Es(M)=LOG(ABS(Coefs*Atten))/(2*Ks(M)*(H/Kappal +T/Kappa2s))
CASE?RINT USING Frmt2;Ks(M),M,Es(M),Atten,R23ss,T12ps, T21sp,Phil
(1% sp"
Coefs=R1*R23sp*T12ps*T21
Atten=10"(—(Alfa2*Rng+Alfa2s*Rngs)*Freq/10000)
Es(M)=LOG(ABS(Coefs*Atten))/(Ks(M)*(H/Kappal+T/Kappa2+
T/Kappa2s))
PRINT USING Frmt2;Ks(M),M,Es(M),Atten,R23sp,T12ps,T21,Phil
CASE “ ps”
Coefs=R1*R23ps*T12*T21sp
Atten=10M(-(Alfa2*Rng+Alfa2s*Rngs)*Freq/10000)
Es(M)=LOG(ABS(Coefs*Atten))/(Ks(M)*(H/Kappal+T/Kappa2+
T/Kappa2s)) ‘
PRINT USING Frmt2;Ks(M),M,Es(M),Atten,R23ps,T12,T21sp,Phil
END SELECT
END SELECT

N=N+1
END IF

Nxtl:!
NEXTL

NEXT Stepslow
PRINT
Sub_sed_end:!
SUBEND

...................

SUB Exact(Kn(*),En(*),Kw(*),Ew(*),Nmoden,Nmodew,Nmodes,TypeS,SymS,Extras,
S$$,OPTIONAL INTEGER Diffcase)

Frmt1:IMAGE 3X,4A,2D,4A,SD.4DE 4X,4A,2D,4A,SD.4DE,2X,2D.D
Frmt2:IgAAGESX,4A,2D,4A,SD.4DE,4X,4A,2D,4A,SD.4DE,3X,2D.2D,2X,2D.2D,
X,3D.
Frmt3: IMAGE 2X,3D.2D,3X,2D.2D,3X,2D.2D,3X,3D.2D,2X,2D.2D,3X,2D,2D,3X,
2D.2D,4X,2D.2D,2X,3D.2D




COM  /Parameterl/  Cl, C2, Rhol, Rho2, H, T, Freq, Alfa2, R1, Rlphase
COM  /Parameter2/  C2s, C3, C3s, Rho3, Alfa2s
COM  /Wavenumber/ W, K1, K2, K2s, K3s

INTEGER I, L, M, N, Num_iters, Max_iters, Num_divs, Stepslow
DIM Wi(2,1), Wipl(2,1), F(2,1), 1(2,2), Jinv(2,2)

PRINT
PRINT TAB(19);“EXACT ”;Type$;“SOLNS”;Sym$
PRINT

Max_iters=100
Wipl(1,1)=0
Wipl1(2,1)=0

Nmoden=0

Stepslow=1
Onum_divs=Nmodes/1.2

FOR I=1 TO 90
Kn(1)=0
En(I)=0

NEXT I

FOR Stepslow=Stepslow TO Nmodes+1
SELECT Type$
CASE“lI”
IF Stepslow=1 THEN
Kstart=(Kw(Stepslow+Extras)+Ks(Stepslow+Extras))/2
Estart=(Ew(Stepslow+Extras)+Es(Stepslow+Extras))/2
Knext=MIN(0.9999*¥K 1,0.99999*K?2)
ELSE
IF Stepslow<Nmodes+1 THEN
Kstart=(Kw(Stepslow+Extras)+Ks(Stepslow+Extras))/2
Estart=(Ew(Stepsiow+Extras)+Es(Stepslow+Extras))/200
Knext=Ks(Stepslow-1)

ELSE
Kstart=1.E4
Estart=(Ew(Stepslow+Extras)+Es(Stepslow+Extras))/200
Knext=Ks(Stepslow-1)

END IF

END IF

CASE “lee”

IF Stepslow=1 THEN
Kstart=(Kw(Stepslow+Extras)+Ks(Stepslow+Extras))/2
Estart=(Ew(Stepslow+Extras)+Es(Stepslow+Extras))/2
Knext=MIN(0.9999*K 1,0.99999*K2)

ELSE
IF Stepslow<Nmodes+1 THEN

Kstart=(Kw(Stepslow+Extras)+Ks(Stepslow+Extras))/2
Estart=(Ew(Stepslow+Extras)+Es(Stepslow+Extras))/2
ELSE Knext=Ks(Stepslow-1)

69




Kstant=1.E4
Estart=(Ew(Stepslow+Exiras)+Es(Stepslow+Extras))/z
Knext=Ks(Stepslow—1)
END IF
END IF
END SELECT

PRINT
Num_divs=INT(Onum_divs*(1+2*Stepsiow/(Nmodes+1)))
Kstep=(Knext-Kstart)/Num_divs

FOR L=1 TO Num_divs
Num_iters=0
Wip1(1,1)=Kstart+(L-1)*Kstep
Wipl1(2,1)=Estart
IF Wipl(1,1)<>0 THEN

REPEAT
MAT Wi= Wipl
GOSUB Function
IF ABS(F(1,1))>100 OR ABS(F(2,1))>100 THEN Nextl
GOSUB Jacobian
MAT Wipl=Jinv*F

IF Diffcase=1 THEN

MAT Wipl= Wip1/(1.0)
ELSE

MAT Wipl= Wip1/(1.2)
END IF

MAT Wipl= Wi-Wipl
Num_iters=Num_iters+1

FOR I=1 TO Nmoden
Test2=ABS(Kn(I)-Wipl(1,1))
IF Test2<=0.0001 THEN Nextl
NEXTI1

IF ABS(Wipl1(1,1))>1.E+5 THEN Nexl
IF ABS(Wip1(2,1))>1.E+5 THEN Nextl
F1=ABS(F(1,1))
F2=ABS(F(2,1))

UNTIL Fl<=1.E-4 AND F2<1.E-4 OR Num_iters>=Max_iters

[F Num_iters>=Max_iters THEN
PRINT *“Max Iterations”

ELSE
IF Wip1(1,1)<0 THEN Nextl
[F Phil<0 Then Nextl
Nmoden+Nmoden+1
M=Nmoden
Kn(M)=Wipl(1,1)
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En(M)=Wip1(2,1)

SELECT Type$
CASE “llI”
PRINT USING Frmt2;”Kn(*“,M,”) = “,Kn(M),”’En(“.M,”) = “,En(M),
R1211, R2311,Phi1*180/PI
CASE “lee”
PRINT USING Frmti;”Kn1(*,M,”) = “,Kn(M),”Enl1(*,M,”) =,
En(M),Phil1*180/PI
END SELECT
IF Nmoden=1 THEN Nextl
GOTO Nextss
END IF
END IF
Nextl:!
NEXTL
Nextss:!
NEXT Stepslow
GOTO Sub_ex_end

Function:!

Km=Wi(l1,1)
Em=Wi(2,1)
IF Km=0 THEN Nextl

Kappal=SQR(K1/2-Km*2)
Kappa2=SQR(K242-Km"2)
Kappa2S=SQR(K2S$/2-Km"2)
Sign1=SGN(K142-Km~2)
Sigr2=SGN(K242-Km"2)
Sign2s=SGN(K2s*2-Km"2)

IF ABS(Km)>=ABS(K3) THEN
Kappa3=0
LSE

Kappa3=SQR(K342-Km"2)
ND IF

Kappal=Kappal *Signi
Kappa2=Kappa2*Sign2
Kappa2s=Kappa2s*Sign2s

Phil=ATN(Kappal/Km)
Phi2=ATN(Kappa2/Km)
Rng=T/SIN(Phi2)

D=Rho1/Rho2

P=Kappa2/Kappal

Z12=D*P
Z23=(Rho2/Rho3)*(Kappa3/Kappa2)
R1211=ABS((1-Z12)/(1+Z12))
R231=ABS((1-223)/(1+Z23))




Aa=2*Kappal *H+R lphase
Bb=2*Kappa2*T
Ab=Aa+Bb

Saa=SIN(Aa)
Sab=SIN(AD)
Caa=COS(Aa)
(Cab=COS(AD)

G=Km*Em
G1=H/Kappal
G2=T/Kappa2
G12=G1+G2
Gf=2*G*Gl1
Fact1=-2*Km*Gl
Fact2=-2*Km*G2
Fact12=Factl+Fact2
Ex2=-T*G/Kappa2
Ex4=2*Ex2

IF ABS5(Ex4)>10 OR ABS(Gf)>10 THEN Nextl

Y 1=Km/Kappal
Y 2=Km/Kappa2
Y=1+Y1/2
Y4=1+Y2A2

B1=—2*Alfa2*Rng*Freq/10000
Fg=G1*EXP(Gf)

SELECT Type$
CASE “lI”
S=10A(B1)*(1-R1211"2)*R2311*EXP(Ex4)
$2=R1211*R2311* 100 (B1)*EXP(Ex4)
Den=1+82/2+2*S2*COS(Bb)
F(1,1)=R12l1*Saa+S*(Sab+Saa*S2)/Den
F(2,1)=EXP(Gf)-R1211*Caa—R1*S*(Cab+S2*Caa)/Den
CASE “lee”
IF ABS(Km)>=ABS(K3s) THEN
Kappa3s=0
ELSE
Kappa3s=SQR(K3s"2-Km*2)
ND IF

Phi3=ATN(Kappa3/Km)
Phi2s=ATN(Kappa2s/Km)
Phi3s=ATN(Kappa3s/Km)
Rngs=T/SIN(Phi2s)

Cc=2*Kappa2s*T
Dd=Kappa2*T+Kappa2s*T
Ac=Aa+Cc

Sac=SIN(Ac)
Sad=SIN(Ad)
Cac=COS(Ac)
Cad=COS(Ad)
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G2s=T/Kappa2s
G125s=G1+G2s
Gs=2*G1+G2+G2s
Ex2s=-T*G/Kappa2s
Ex4s=2*Ex2s
Ex=Ex2+Ex2s
Y2s=Km/Kappa2s
Y4s=1+Y2s"2

Ccl=-2*Alfa2s*Rngs*Freq/10000
D1=(Alfa2*Rng+Alfa2s*Rngs)*Freq/10000
B12=1-(SIN(2*Phi2s))*2*(1-Kappa2/Kappa2s)
R12le=(-z12+B12)/(z12+B12)

T12=2*D*COS(2*Phi2s)/(Z12+B12)
T21=2*P*COS(2*Phi2s)/(Z12+B12)
T12ps=—4*D*(COS(Phi2s)*2)*TAN(Phi2)/(Z12+B12)
T21sp=—4*P*(COS(Phi2s)*2)*TAN(Phi2s)/(Z12+B12)

R21den=SIN(Phi1)*((C2/C2s)*COS(2*Phi2s)*2+SIN(2*Phi2)*SIN(2*Phi2s)*
(C2s/C2))+(C2*C1*Rhol *SIN(Phi2))/(C2s*C2*Rho2)

R21=((SIN(Phil)*((C2/C2s)*COS (2*Phi2s)*2-SIN(2*Phi2)*SIN(2*Phi2s)*
(C2s/C2))-(C2*C1*Rho1*SIN(Phi2))/(C2s*C2*Rho2)))/R21den

R21ss=((SIN(Phi1)*((C2/C2s)*COS(2*Phi2s)*2-SIN(2*Phi2)*SIN(2*Phi2s)*
(C2s/C2))+HC2*C1*Rho1 *SIN(Phi2))/(C2s*C2*Rho2)))/R21den

Tan2=Kappa2/Km
Tan3=Kappa3/Km
Tan2s=Kappa2s/Km
Tan3s=Kappa3s/Km
Mu2s=Rho2*C2sA2
Mu3s=Rho3*C3s/2

Pl=(2*Mu2s+Mu3s*(Tan3s"2-1))*Tan2*Tan2s
P2=(Mu2s*(Tan2s"2-1)-Mu3s*(Tan3s*2-1))*Tan2
P3=(2*Mu3s+Mu2s*(Tan2sA2-1))*Tan3*Tan2s
P4=2*(Mu3s-Mu2s)*Tan3*Tan2*Tan2s

Q1=2*(Mu2s-Mu3s)*Tan3*Tan2*Tan2s
Q2=(2*Mu3s+Mu2s*(Tan2s*2-1))*Tan3s*Tan2
Q3=((-Mu2s*(Tan2s"2-1))+(Mu3s*(Tan3s*2~1)))*Tan2s
Q4=P1

Denomin=((P1+P3)*(Q2+Q4)-(P2+P4)*(Q1+Q3)) _
R23pp=(((P1-P3)*(Q2+Q4)—-(P2+P4)*(Q1-Q3))/Denomin)
R23ss=(((P2-P4)*(Q1+Q3)~«(P1+P3)*(Q2-Q4))/Denomin)
R23sp=(2*(P3*Q1-P1*Q3)/Denomin)
R23ps=(2*(P4*Q2-P2*Q4)/Denomin)

A=ABS(R1*R12le)
P=ABS(R1*R23*T12*T21)
C=ABS(R1*R23ss*T12ps*T21sp)




74
D=ABS(R1*R23sp*T12ps*T21)
E=ABS(R1*R23ps*T12*T21sp)

B2=10A(B1)*EXP(Ex4)
Cc2=10~(Cc1)*EXP(Ex4s)
D2=10"D1)*EXP(Ex)

Pp=R21*R23*10M(B1)*EXP(Ex4)
Ss=R21ss*R23ss*10*(Cc1)*EXP(Ex4s)

Deno1=1-2*Pp*COS(Bb)~Pp"2
Deno2=1-2*3s*COS(Cc)-Ss”2

Flwat=A*EXP(-Gf)*Saa

Flsed=(B*10A(B1)/Denol)*(EXP(-2*G*G12)*Sab—Pp*EXP(-Gf)*Saa)

Flsedsp=(D*10MD1)/Denol)*(EXP(-G*Gs)*Sad-Pp*EXP(-G*(2*G1+G2s—
G2))*SIN(Aa+Cc/2-Bb/2))

Flsedss=(C*10*(Cc1)/Deno2)*(EXP(-2*G*G 12s)*Sac-Ss*EXP(-Gf)*SIN(Aa))

Flsedps=(E*107(E1)/Deno2)*(EXP(-G*Gs)*Sad-Ss*EXP(-G*(2*G1-
G25+G2))*SIN(Aa-Cc/2+Bb/2))

F2wat=A*Caa

F2sed=(B*10(B1)/Denol )*(EXP(-2*G*G 12)*Cab-Pp*EXP(-Gf)*Caa)

Flsedsp=(D*10%D1)/Denol)*(EXP(-G*Gs)*Cad-Pp*EXP(-G*(2*G1+G2s-
G2))*COS(Aa+Cc/2-Bb/2))

Flsedss=(C*10/(Cc1)/Deno2)*(EXP(-2*G*G12s)*Cac-Ss*EXP(-Gf)*
COS(Aa))

Flsedps=(E*10*(E1)/Deno2)*(EXP(~G*Gs)*Cad—Ss*EXP(-G*(2*G 1~
G25+G2))*COS(Aa-Cc/2+Bb/2))

F(1,1)=F1wat+F1sed+F1sedss+F1sedsp+F1sedps
F(2,1)=1-F2wat*EXP(-Gf)-F1sed-F1sedss-F1sedsp-F1sedps
END SELECT
RETURN

Jacobian:!

SELECT Type$
CASE “lII”
J(1,1)=Fact1*R1211*Caa+S*(EXP(EX4)*(Cab*(Fact1+Fact2)-Sab*2*Em*Y4))
J(1,2)=S*EXP(Ex4)*Sab*Fact2
J(2,1)=EXP(Gf)*2*Em*G1*Y#R1*R12l11*Saa*Factl +R1*S*EXP(Ex4)*
(Cab*2*Em*G2*Y4+Sab*(Fact1+Fact2))
J(2,2)=—EXP(Gf)*Fact1-R1*S*EXP(Ex4)*Cab*Fact2
CASE “lee”
Fact2s=-2*Km*G2s
Fact12=Factl+Fact2
Fact12s=Factl+Fact2s
Dfact=EXP(-G*Gs)*(Fact1+Fact2/2+Fact2s/2)
I(1,1)=-A*EXP(-Gf)*Caa*Fact1+B*10*(B1)*(EXP(-2*G*G12)*Cab*Fact12-
Pp*EXP(-Gf)*Caa*Fact1)/Denol1+C*10MCc 1)*(EXP(—2*G*G12s)*Cac*
Fact12-Ss*EXP(-Gf)*Caa*Fact1)/Deno2+D*10MD1)*(Dfact*Cad-Pp*
EXP(-G*(2*G1+G2s—G2))*COS(Aa+Cc/2~Bb/2)*(Fact1 +Fact2s/2—
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Fact2/2)))/Denol+E* 10~ (D1)*(Dfact*Cad-Ss*EXP(-G*(2*G1-G2s+G2))
*COS(Aa—Cc/2+Bb/2)*(Fact1-Fact2s/2+Fact2/2)))/Deno2
J(1,2)=A*EXP(-Gf)*Saa*Fact1+B*10~(B1)*(EXP(-2*G*G12)*Sab*Fact12-
Pp*EXP(-Gf)*Saa*Fact1)/Denol+C*10MCc1)*(EXP(-2*G*G12s)*Sac*
Fact12-Ss*EXP(~Gf)*Saa*Fact1)/Deno2+D*10A(D1)*(Dfact*Sad-Pp*
EXP(-G*(2*G1+G2s—G2))*SIN(Aa+Cc/2-Bb/2)*(Factl +Fact2s/2-
Fact2/2)))/Denol+E*10MD1)*(Dfact*Sad-Ss*EXP(-G*(2*G1-G2s+G2))
*SIN(Aa~Cc/2+Bb/2)*(Fact1-Fact2s/2+Fact2/2)))/Deno2
J2,1)=1(1,2)
1(2,2)=-1(1,1)
END SELECT
MAT Jinv= INV(J)
RETURN

Sub_ex_end:!
SUBEND

SUB Nat_log_e(E(*),Ln_e(*),Nmode)

INTEGER I

FOR I=1 TO Nmode
Ln_e(I)=LOG(ABS(E(T)))
I

NEXT
SUBEND

SUB Ln_e_vs_k_plot(K(*),E(*),Ln_e(*),Nmode,Color,Mark$)

CSIZE 2,4
PEN Color
LORG S

FOR I=Nmode TO 1 STEP -1
MOVE K(I),-Lr_e(I)
LABEL Mark$

NEXT I

SUBEND

SUB Incohrnt(Kw(*),Ew(*),Ks(*),Es(*),Kn(*),En(*),Nmodew,Nmodes,Nmoden,
Indbex Extras)

Formatl: IMAGE 4X,56A,4D.D X ,2A
COM  /Wavenumber/ W, K1, K2, K2s, K3s
INTEGER ILR,Z

Z=100
R=10000
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Insumw=0
Insums=0
Insumn=0

FOR I=Extras+1 TO Nmodew
Kappal=SQR(K142-Kw"2)
Incow=((COS(Kappal*Z)*SIN(Kappal *Z)*EXP(-ABS(Ew(I))*R))/Kw(D)*1.5)"2
Insumw=Insumw+Incow

NEXT I

FOR I=1 TO Nmodes
Kappal =SQR(K1/2-Ks"2) :
Incos=((COS(Kappal*Z)*SIN(Kappal *Z)*EXP(~ABS(Es(I))*R))/Ks(I)*1.5)2
Insums=Insums+Incos

NEXT I

FOR I=1 TO Nmoden
Kappal=SQR(K1/2-Kn"2)
Incon=((COS(Kappal *Z)*SIN(Kappal*Z)*EXP(-ABS(En(I))*R))/Kn(I)*1.5)*2
Insumn=Insumn+Incon

NEXT

Insumall=Insumw+Insums
Indball=10*LGT(Insumall)
Indbex=10*LGT(Insumn)

PRINT
PRINT USING Formatl;“Incoherent (Water + Sediment) — Incoherent Exacts ”,Indball-
Indbex,“dB”

SUBEND

SUB Fouraxes(Color, INTEGER Diffcase)

OOM  /Parameterl/  Cl, C2, Rhol, Rho2, H, T, Freq, Alfa2, R1, Rlphase
COM  /Wavenumber/ W, K1, K2, K2s, K3s

DEG
LORG 5
PEN Color

Kmax=INT(Freq/2)*1.E-2
SELECT Diffcase
CASE 1

VIEWPORT 20,65,47,72
CASE 2

VIEWPORT 67,112,47,72
CASE 3

VIEWPORT 67,112,21,46
CASE 4




VIEWPORT 20,65,21,46
END SELECT

WINDOW 0,Kmax,0,7
AXES 0,2,0,1,1
MOVE 0.05,1

PEN -1

DRAW Kmax,1

PEN Color

CSIZE 3,4

FOR J=1TO 10
Ang=COS(10*(J-1))*K1
MOVE Ang,1.25
DRAW Ang,1
IF J=1 THEN

PEN -1
MOVE Ang+Kmax/35,1
DRAW Kmax,1
PEN Color
END IF
IF Diffcase=3 OR Diffcase=4 THEN
IF J=1 THEN
MOVE Ang,.3
LABEL“0”
END IF
IF J=4 THEN
MOVE Ang,.3
LABEL “30”
END IF
IF J=7 THEN
MOVE Ang,.3
LABEL “60”
END IF
[F J=10 THEN
MOVE Ang,.3
LABEL “90”
END IF
END IF
NEXTJ
SUBEND
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SUB Label4axes(Color)

VIEWPORT 0,131,0,100
CSIZE 2.7

LORG 5

DEG

PEN Color
MOVE 31,72




LABEL “FINE FLUID’

MOVE 84,46
LABEL “SEMICONSOLIDATED”

CSIZE 3

MOVE 62,18

LABEL “GRAZING ANGLE"
LDIR 90

MOVE 9,49

LABEL “~In(ABS(En))”

LDIRO
CSIZE 3,4
MOVE 18,72
LABEL “7”
MOVE 18,51
LABEL “1”
MOVE 18,46
LABEL “7”
MOVE 18,25
LABEL “1”

SUBEND
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SUB Sort(K(*),E(*),Nmode)

INTEGER ILN
FOR N=1 TO Nmode-1
FOR I=N+1 TO Nmode

IF K(N)>K(I) THEN
Junk=K(N)
K(N)=K(I)
K(I)=Junk
Dummy=E(N)
E(N)=E()
E(I)=Junk

END IF

NEXT 1
NEXT N

SUBEND




